On the Complexity of Computing and Learning with Networks of Spiking Neurons
نویسنده
چکیده
In a network of spiking neurons a new set of parameters becomes relevant which has no counterpart in traditional neural network models: the time that a pulse needs to travel through a connection between two neurons (henceforth called \delay" of a connection). It is known that these delays are tuned in biological neural systems through a variety of mechanisms. We investigate the VC-dimension of networks of spiking neurons where the delays are viewed as \programmable parameters" and we prove tight bounds for this VC-dimension. Thus we get quantitative estimates for the diversity of functions that a network with xed architecture can compute with diierent settings of its delays. It turns out that a network of spiking neurons with k adjustable delays is able to compute a much richer class of Boolean functions than a threshold circuit with k adjustable weights. The results also yield bounds for the number of training examples that an algorithm needs for tuning the delays of a network of spiking neurons. Results about the computational complexity of such algorithms are also given.
منابع مشابه
Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملComputing with Spiking Neuron Networks A Review
Spiking Neuron Networks (SNNs) are often referred to as the third generation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an accurate modeling of synaptic interactions between neurons, taking into account the time of spike firing. SNNs overcome the computational power of neural networks...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998